b. Hind angles of thorax moderately prominent :
$\cdot 34-37$. Antennæ, tip of tibiæ, tarsi and trunk dark brown; thorax scarcely punctnlate; elytra scarcely costate. Kansas. stygicornis Say.
c. Hind angles of thorax very slightly prominent:
$\cdot 27-35$. Elytra scarcely costate; antennæ and abdomen not infuscated. Middle and Western States, Kansas. cordicollis \ddagger Lec. . rejectus Lec.=3m om
F. Smaller species; thorax longer than wide, convex, constricted behind, hind angles prominent ; elytra, humeri distinct.
a. Epipleure as usual of the color of the elytra:
29. Elytra oblong, scarcely dilated behind ; abdomen not infuscated. MidAle States. Aptimus janth. Dej. . . . janthinipennis Lec.
-36. Elytra broader quadrate, dilated behind, slightly costate ; trunk infuscated. Southern and Western States. . . quadripennis Dej.
$\cdot 18-25$. Elytra dilated behind, not costate ; abdomen dark brown. medius Lec.
b. Epipleurr pale testaceous;
$\cdot 33-39$. Thorax less narrowed behind than usnal; sides of metathorax and abdomen, and knees dark. Southern States and Arizona, as far as Colorado River.
lateralis $D_{e j}$.
fr. Small species ; thorax longer than wide, hind angles not prominent ; elytra wider behind, humeri indistinct.
$\cdot 28-36$. Thorax very broadly rounded on the sides in front; sides of abdomen dark. Middle and Southern States. cephalotes \ddagger Lec.

> ovipennis Lec.
a. Thorax more strongly rounded on the sides in front:
$\cdot 30-36$. Abdomen dark brown. Middle, Sonthern and Western States. patruelis Lec. conformis Dej.
-21. Abdomen not infuscated. Middle States. . . pumilio Lec.

Contributions to Organic Morphology :-Containing the mathomatical imitation of the egg of PLANORBIS CORNEUS and of EPIORNIS ; and upon the resemblances between Mathematical, Acoustic, Electric, Optical and Organic Eigures ; with historical and other remarks.

BY JOMN WARNER, A. M.
 PREFACE.

In a work published several years ago, I endeavored to make some contribution to the knowledge of Organic Morphology.* Among other matter, the work contained the results of investigations made to determine the coincidence in form between sections of hen's eggs and a curve there proposed. In the present paper, it is designed to extend these investigations, and to notice some other subjects of interest. Some use will be made both of original and selected matter contained in the work referred to, and other citations will be added, Which seem appropriate in treating a branch of science not yet possessing a classified and independent literature.

MORPHOLOGICAL LITERATURE.

Numerous anthorities might be cited, bearing upon the general subject of our research, and containing information and suggestions worthy of study;

[^0]but extensive reference to these authorities would be inconsistent with our present limits : many of them, either directly or indirectly, adrocate the possibility of a mathematical explanation of the cause of organic forms.

Professor Bronn* considers that there is an incousistency in supposiug the organic world alone to be derived from a direct act of creation, whilst all the rest is born and perishes from the effect of general forces eternally immanent in matter. He concludes that all species of animals and vegetables were originally created by a natural foree, at present unknown-that they do not owe their origin to a successive transformation of a few primitive forms-and that this force held a most intimate and necessary relation to the forces and events which have controlled the development of the surface of the globe. He thinks that such a hypothetical force would be in entire harmony with the whole economy of nature, and that the hypothesis would not only permit the belief in a Creator presiding over the development of organic nature by means of an intermediate force, but that this conception is more sublime than the idea of a direct supervision, by the Creator, of the succession of plants and animals. Professor Bromn also considers the fundamental form of a plant to be that of an egg placed upright. Investigation of the relation between matural and mathematical ovoid forms might furnish a test for the correctness of this idea, or, if it is well founded, assist in explaining its application.

Some mathematical writers treat as an evident proposition the ultimate connection between mathematics and the explanation of natural processes. \dagger Fechner undoubtedly encourages this idea, and even proposes, more or less definitely, the adoption of a mathematical classification in physiognomy, craniology, and ethnology. \ddagger

Lotze, on the other hand, takes the opposite extreme. In one of his more skeptical passages he compares the attempt to discover the laws of organiza-

[^1]tion by the study of organic forms, to the endeavor to decipher the principle or purpose of a complicated machine by the contemplation of its shadow.* He discourages the notion that the shape of the egg is susceptible of a mathematical explanation. The form of the egg, he considers, is not the immediate product of a formative tendency, but the mechanical result of a t wisting action of the oviduct, and gives as little hope of an explanation of the forming forces as, for example, the shape of a top does of comprehending the law of formation of the person who turned it. \dagger

Meckel \ddagger accounts for the form of the egg in a similar manner. He cites Thienemann to show that when the egg is forced rapidly through the oviduct, in consequence of persistently chasing the hen, the egg is then deformed, being greatly elongated and without a hard shell. He also alludes to the experiments of M. St. Hilaire in proof of the fact that hen's eggs placed vertically during incubation either do not come to development or else produce monsters. On the whole, he appears to be of opiuion that the form of the egg may not only lave a mechanical origin, but may be important as a roechanical means in determining the form of the embryo.

OF MATHEMATICAL OVOIDS.

Fechner adopts the oval of Descartes, proposed by Steiner, as the true representative of the form of the egg.§ The elliptic spheroid he considers to be a rough approximation to the true form ; but M. St. Hilaire states that out of siz eggs of the Epiornis, sent to France, five were nearly true ellipsoids.|| The other had a large and a small end. We shall now consider particularly the curve proposed by ourself to represent the longitadinal section of an egg. This curve belongs under a general formula which includes the ellipse. We shall principally consider a curve having an obtuse and an acute end, and which may be called the hyper-ellipse, and the solid generated by its revolution, the hyper-ellipsoid. T

Construction of the hyper-ellipse.-Measure the length and thickness of the egg. Draw (Fig. 1, Plate 1) A B, H D, each equal to the length of the egg, and bisecting each other at right angles in C. Make D K equal to the halfthickness of the egg, and on H K describe a semicircle cutting A B in F . Then A B is the axis of the hyper-ellipse, and F is the focus.

Construct an ellipse (Fig. 2) with the semi-axes F A, F B equal respectively to the same distances in Fig. 1, and draw any radius rector FP.

In Fig. 3 draw B F, F A, as in Fig. 1, and make the angle A F P equal to twice the angle A F P of Fig. 2; also make F P equal to the same in Fig. 2. The point P is then a point of the hyper-ellipse. In a similar manner any required number of points may be found, and the curve traced through them by hand. Instead of beginning the construction at A, we may commence at B, making the angle B F P equal to twice the same of Fig. 2, and the radius F P the same.

[^2]1862.]

The curre can also be constructed by drawing F P from any assumed pole at F ，at any angle with an assumed axis A B．Then，knowing the length and thickness of the egg and the angle A F P ，the length F P can be calculated by the aid of a proper formula，hereafter given，and transferred to the drawing．

COMPARISON OF EGGS WITH THE HYPER－ELLIPSOID．

Egg of Planorbis corneus．－The example just given to show the construc－ tion of the hyper－ellipse（Fig．3）presents a good imitation of the magnified drawing of an egg of Planorbis corneus．＊It is remarkable that the focus F of the theoretical egg falls，as nearly as can be readily observed，in the centre of the vitellus，according to the engraving given by Jacquemin．The magni－ fied egg of the engraving measures，say，length $1 \cdot 63$ inches，thickness $1 \cdot 31$ ． The distance B F is found by calculation $45+$ ．

Egg of Epiornis．－The cast of the egg of Epiornis belonging to the Acade－ my of Natural Sciences in this city is，I doubt not，from the pointed egg de－ scribed by M．St．Hilaire．\dagger A longitudinal section of this cast was obtained by cutting a templet to fit closely around it，then tracing the form of the egg from the templet．The first section thus obtained was not quite symmetrical with respect to the long axis．A second section，taken on a plane at right angles to the plane of the first，was more nearly symmetrical．The cross－sec－ tion of the cast measured so nearly circular，that the small difference in the diameter of the sections taken may be disregarded．For the purposes of calcu－ lation we have taken M．St．Hilaire＇s dimensions reduced to inches，－length $12 \cdot 756$ ，thickness $8 \cdot 859$ ．

Fig． 4 represents the theoretical egg on a scale of one－fourth．The follow－ ing tables exhibit the dimensions of the two real sections and of the theoretical section．Each real section is divided by the axis into two parts not entirely symmetrical．The radii vectores of each part are given for various polar angles．The distance from the obtuse end of the egg to the line of greatest thickness is not involved in the construction of the theoretical ovoid．This distance as measured on the egg should be compared with the same as found by construction．In the tables it is designated by $\mathrm{B}^{\prime}+\rho \cos \gamma$ ．

TABLE I．
measured valdes for feal egg．

Designation．		Values of the radius vector for various polar angles．										
		0°	10°	20°	30°	40°	2	70°	90°			0°
	Part 1.	$9 \cdot 90$	$9 \cdot 56$	$8 \cdot 64$	7－66	$6 \cdot 67$	$5 \cdot 49$	$4 \cdot 59$	$3 \cdot$	23	$2 \cdot 98$	
或呺	Part 2.	$9 \cdot 90$	$9 \cdot 37$	$8 \cdot 42$	$7 \cdot 4$	$6 \cdot 60$	$5 \cdot 49$	$4 \cdot 65$				
	Part 1.	$9 \cdot 90$	$9 \cdot 52$	S．62	$7 \cdot 56$	$6 \cdot 63$	$5 \cdot 49$	$4 \cdot 62$			． 07	
路	Part 2.	$9 \cdot 90$	$9 \cdot 43$	S． 5	$\cdot 56$	6.65	5	9	3			

Note．－The distance from the large end of the egg to the greatest cross－ section $=B^{\prime}+\rho \cos \gamma=6$ inches．The radius for a polar angle of $56^{\circ} 34^{\prime}$ is $5 \cdot 39$ ，average of four dimensions．

[^3]［Dec．

TABLE II.
CALCULATED VALUES FOR THEORETICAL EGG.

Note.-The length and thickness of the egg are the same for both tables, viz. : length $12 \cdot 76$-; thickness $8 \cdot 86$. The polar angle at the point of greatest thickness is designated by γ, but has not the same value in each table, being a measured value in Table I. and a calculated value ($56^{\circ} 34^{\prime}$) in Table II. The distance $B^{\prime}+\rho \cos \gamma$ for this angle is, by calculation, $5 \cdot 79$.

By these tables we perceive that the first part of the first section agrees very closely, from the apex to the widest part, with the theoretical curve. The second part is less satisfactory. The average real section would nowhere differ from the theoretical curve by much more than the thickness of the eggsliell (about 12-100 inch).

ON THE SIGNIFICATION OF THESE COMPARISONS.

Position of the Vitellus.-A belief in the adaptability of polar formulx to explain some processes of nature was somewhat vaguely expressed by Grandus. James Bertoulli seems to have been strongly, though vaguely, inpressed with the : idea of an important meaning in the logarithmic spiral. Moseley and Naumann have demonstrated its existence in several shells, and similar results hare since been obtained.* Possibly the mechanical properties of this spiral are involved among the causes wluch give the first direction to the windings of shells. Naumann suggests that all spirally wound conchylia may begin with a logarithmic spiral. The law of the growth of the animal may then, perhaps, be subsequently instrumental in determining the form of the shell. \dagger Lotze says, in discussing the mathematical explanation of organic forms, that in pure mathematics it is not absolutely essential that the origin of co-ordinates be in any particular place, but where an explanation of the nature of phenomena is required, the origin must be taken where, in the Real, the centre of emanation of action resides; the direction and connection of the co-ordinates must correspond with those of the operating forces. \ddagger
The position of the vitellus in the pole of the theoretical egg may, possibly, exhibit that coincidence of mathematical and organic system which is intended by Lotze. It would be desirable to have correct observations of the positions of different parts within the egg, in order to attempt the discovery

[^4]Whether any of these parts have a position remarkable in a mathematical point of view, and which might, therefore, possibly suggest something important in regard to further researches.*

Cubical contents.-The volume of the hyper-ellipsoid is equal to the solidity of a prolate ellipsoid having the same length and thickness. \dagger Hence it appears that a definite quantity of material fit for the composition of an egg might, considered geometrically without regard to other conditions, take the form of either an ellipsoid or hyper-ellipsoid egg; the length and the thickness being the same in each case. It seems probable that either form might suit the structure of those parts of the bird which auatomists believe to be most directly concerued in giving shape to the egg. I do not certainly know whether the same hen can lay eggs of both forms. Among several hyper-ellipsoid eggs, said to l.e from the same hen, was found one which most observers would probably consider ellipsoidal. A gentleman who once took much interest in the breeding of fowls states that, whilst engaged in this pursuit, he was able from the appearance of the eggs, but not judging alone by the shape and size, to recognize with considerable certainty the eggs of particular birds and of particular breeds. In his opinion, the eggs of the same hen would appear, to ordinary observation, to be of nearly the same size and shape: sometimes, however, an unusually large egg containing two yolks will be produced. My iimited observation is, in general, in favor of the supposition of uniformity of size and shape among the eggs of the same individual. I have, besides measuring some hen's eggs, carefully inspected the eggs found in several nests of will birds.

Standard of comparison for shape.-As far as I am aware, no mathematical standard of comparison for the shape of eggs has been fixed. Thus, for example, if we had an egg intermediate, as the term would generally be applied, between the ideal form above found for the egg of Epiornis, and a true ellipsoid having the same diameters, it would be left to the judgment alone to decide which ideal form should be preferred as a representative of the egg.
M. St. Hilaire does not give measurements to show the agreement between the ellipsoidal eggs of Epiornis and true ellipsoids. Of some of them, he says their resemblance to each other was so great that one might have readily been mistaken for the other. From this description I doubt whether tbese eggs resembled ellipsoids more nearly than the present egg of Epiornis resembles the hyper-ellipsoid. \ddagger

RESEMBLANCES BETWEEN MATHEMATICAL, ACOUSTIC, ELECTRIC, OPTICAL AND ORGANIC FIGURES.

The mathematical laws of the propagation of light are shown to be particular cases of the more general laws of vibratory motion in any elastic medium composed of attracting and repelling molecules. § It would, therefore, seem that forms similar to those shown in the polarization of light, and in other

[^5]optical experiments, might result from the vibrations of other substances which in their vibrations may follow the same or similar laws. This may possibly be the reason of some resemblances of the kind we shall now consider.

Construction of the Hyperaster. -Figures resembling star-fish may be derived from the ellipse by a construction similar to that given for Fig. 3. Both constructions can be included under a general mathematical formula.* To construct the hyperaster with five points, make the ellipse (Fig. 5) with the semi-axis F B equal to the short radius F B (Fig. 6) of the star, and with the longer semi-axis F A equal to the long radius FA of the star. Then, begiming at B , proceed as for the construction of Fig. 3, except that the angle B F P of Fig. 6 is to be always takeu equal to two-fifths of B F P in Fig. 5. When the radius F P of Fig. 5 las passed through a revolution of 90°, it will coincide with F A, and P will then fall upon A . During the same time, the radius F P of Fig. 6 will pass over two-fifths of 90°, or 36°, and will reach A. When the radins of Fig. 5 reaches F C, it will have passed over 180°, and in Fig. 6 the radius, then at C , will have passed over two-fifths of 180°, or 72°, which is the fifth part of the circumference of the circle. The arm B A CF of the star is therefore derived from the semi-ellipse B A C. A repetition of the same process will derive the next arm of the star from the semi-ellipse C D B; and so on, until the five arms of the star are completed. \dagger By means of this construction, star-fish or other organic bodies resembling them can be imitated. Returuing to Figs. 2 and 3, it will be observed that, starting at B, the entire Fig. 3 is generated from the semi-ellipse B A C, in the same way that the arm BACF of Fig. 6 is derived from the semi-ellipse B A C, Fig. 5. Viewed in this manner, the egg, Fig. 3, appears a one-armed star-fish. Whether or not this conception may have any significance in nature, it appears remarkable to find two different organic forms thus classed under the same mathematical formula. Some of the figures known as acoustic figures, produced by the vibration of elastic plates, can also be imitated. Figures resembling Fig. 6 are given by Chladni in his treatise. Possibly the acoustic figures might be produced on a scale sufficiently large to test their agreement with the mathematical figures, by measurement ; and hence it could be, perhaps, determined whether these truly represent the former.

Interesting resemblances can be traced between the optical and acoustic figures, and between these and curves similar in their construction to those we have described, if not always precisely of the same construction. The following is of the same general construction as the previous. By taking the ellipse Fig. 2, and making the angle B F P in the derived figure always equal to onehalf of the same in the ellipse, we derive a curve similar to Fig. 7. Figs. 8 and 9 represent an optical figure and an organic form, having a resemblance to this. \ddagger
*Studies in Organic Morphology, Formula 2, p. 32. We propose to call the curve whose equation is $\rho=\frac{p}{1-\frac{e \cos k \theta}{c}}$ the elliptorster, because the equation resembles that of the ellipse, and the curre itself may represent a star. The name hyperaster may be given to the curve whose radins is a power or root of the radins of the elliptoaster.
\dagger In actual constructions. it will be sufficient to derise one arm of the star, and then, by means of tracing-papar. to dispose five such arms around the centre F. Stars of any desired numker of points may le thus constructed; the angle B FP of the star must be to the angle B F P of the ellipse as the number 2 is to the number of points in the star.
\ddagger See Encyclopedia Britannica, Boston ed., art. Optics, p. 672, for Fig. 9. For Fig. 8 see Zeitschr. fuir Wiss. Zoolugie, Leipzig. 1854, vol. v. Plate XIV. Fig. 34 . These resemblances could be followed to a greater extent. The writer has collected many drawings of mathematical lines, organic cbjecta, optical, acuustic. and electric figures, but must omit further notice of them on the present occasion. By large collections of this kind, and by diligent comparison of their materials, sumething may, perhaps, be elicited which will establish a relialle foundatiou for the study of Organic Morphology as a mathematical science.
1862.]

An electrical figure having a strong resemblance to an egg may be seen on. Plate III. of Lichtenberg's figures.*
M. Cornay considers electricity to be the radical universal generator. He endeavors to illustrate this idea by comparing positions assumed by electrically charged needles to the positions of parts of plants and animals. For this purpose he has numerous engravings. \dagger His description of the circulation of the electric fluid, and of the effect of it in producing the nervation of leaves and the spiral arrangement of leaves around the trunk of the plant, reminds us of similar suggestions of Grandus to account for the disposition of the petals of a flower. But M. Cornay's resort to experiment to test his opinions is an important step in the right direction, for which he deserves the thanks of morphologists, although as yet his experiments cannot be considered conclusise proof of the correctness of his views.

EXPLANATION OF THE PREVIOUS CONSTRUCTIONS—CUBATURE OF THE HYPER-ELLIPSOID. \ddagger

Construction of the Hyper-ellipse and Hyperaster.-Let (Fig. 3) the axis A B, or length of the egg, $=2 a$, and the greatest double ordinate, or thickness of the egg, $=2 \mathrm{~m}$. We have shown, in our work already referred to, that $\mathrm{FA}=a+\sqrt{a(a-m)}$ and $\mathrm{FB}=a-\sqrt{a(a-m)}$: it is now required to find these distances by construction. By the construction given for Fig. 1, $\mathrm{D} \mathrm{K}=m, \mathrm{C} \mathrm{D}=a$, therefore $\mathrm{C} \mathrm{K}=a-m$. But, by Geometry, C F is a mean proportional between CH and C K , that is, between α and $a-m$. Hence $\mathrm{CF}=\sqrt{a(a-m)} ;$ whence $\mathrm{FA}=\mathrm{CA}+\mathrm{CF}=a+\sqrt{a(a-m)}$, and $\mathrm{FB}=\mathrm{CB}-\mathrm{C} \mathrm{F}=a-\sqrt{a(a-m)}$; which was required.

We have further shown that the radius rector of the hyper-ellipse is equal to the radius vector of an ellipse referred to the centre, and in which the polar angle is one-half that of the hyper-ellipse. This is the ellipse shown in Fig. 2, and hence the construction before given for Fig. 3 is evident. By referring to our work, it will be seen that the hyperaster, Figs. 6 and 7, may also be constructed from an ellipse in a similar manner, taking eare that their polar

[^6][Dec.
angle has the proper proportion to that of the ellipse, in order to derive the number of arms or rays desired.*

Cubature of the Hyper-ellipsoid.-Let F, Fig. 10, be the pole, P M an infinitesimal arc, and P FM an elementary triangle of any plane curve, referred to the axis F N , which is also the axis of revolution for the solid.

The centre of gravity, G, of the elementary triangle PFM, is on $D G$, drawn parallel to the side PM, and so situated that FD is two-thirds of the radius FP , $=\frac{2}{3} \rho$. When the side P M vanishes, F P will coincide with F M, and the distance from F to G will then equal $F D=\frac{2}{3} \rho$, and the angles $M F N$, GFN, PFN will all be equal, and each $=\theta$. The distance $G N$ will be $\mathrm{FD} \sin \theta=\frac{2}{3} \rho \sin \theta$; and the distance described by G during a revolution of the elementary triangle P F M about the axis F N will be F D $2 \pi=\frac{4}{3} \pi \rho$ $\sin \theta$. The area of the elementary triangle is, however, $\frac{1}{2} \rho^{2} d \theta$, and the solidity of the conical sheet generated by a revolution of PFM, which is the differential of the solid of revolution, will be, by Guldiu's Formula,

$$
\begin{equation*}
d V=\frac{4}{3} \pi \rho \sin \theta \cdot \frac{1}{2} \rho^{2} \quad d \theta=\frac{2}{3} \pi \rho^{3} \sin \theta d \theta . \tag{1}
\end{equation*}
$$

In the present case this becomes

$$
d \mathrm{~V}=\frac{2}{3} \pi \frac{p^{\frac{3}{2}} \sin \theta}{(1-e \cos \theta)^{\frac{3}{2}}} d \theta=-\frac{4}{3} \pi \frac{p}{e}\left(\frac{-p^{\frac{1}{2}} e \sin \theta}{2(1-e \cos \theta)^{\frac{3}{2}}}\right) d \theta:
$$

in which last $\frac{-p^{\frac{1}{2}} e \sin \theta}{2(1-e \cos \theta)^{\frac{3}{2}}} d \theta$ is the differential of the radius vector ρ; so that we have, by substitution, for the solidity of the whole hyper-ellipsoid,

$$
\begin{equation*}
V=\int_{\theta=0}^{\theta=\pi}-\frac{4}{3} \pi \cdot \frac{p}{\epsilon} d \rho . \tag{2}
\end{equation*}
$$

If the radins for $\theta=0$ be denoted by ρ^{\prime} and the radius for $\theta=\pi$ by $\rho^{\prime \prime}$, this equation gives

$$
\begin{equation*}
\mathrm{V}=\frac{4}{3} \pi \frac{p}{e}\left(p^{\prime}-p^{\prime \prime}\right) \tag{3}
\end{equation*}
$$

[^7]1862.]

But we have seen (Fig. 3) that $p^{\prime}=\mathrm{FA}=a+\sqrt{a(a-m)}$ and $p^{\prime \prime}=\mathrm{FB}$ $=a-\sqrt{a(a-m)}$; hence $p^{\prime}-p^{\prime \prime}=2 \sqrt{a(a-m)}$. Further, in our furmer work, we have shown that $p=\frac{m^{2} a}{2 a-m}$, aud $e=2 \frac{\sqrt{a(a-m)}}{2 a-m}$;

$$
\text { Hence } \frac{p}{e}=\frac{1}{2} \frac{m^{2} a}{\sqrt{a(a-m)}} \text {. Substituting these values of } p^{\prime}-p^{\prime \prime} \text { aud of } \frac{p}{e}
$$

in equation (3), there results

$$
\begin{equation*}
\mathrm{V}=\frac{4}{3} \pi m^{2} a . \tag{4}
\end{equation*}
$$

which is the volume of a prolate ellipsoid whose semi-trausverse axis is a and semi-conjugate m.

The further discussion of the hyper-ellipse has led us to some interestiug formulæ, which, whether this curve is really important in Morphology or uot, appear worthy of attention in a mathematical point of view. These formulæ we hope to present in a subsequent paper.

CONCLUDING REMARKS.

The coincidence iu form between organic outlines aud mathematical figures i.: a subject of difficult interpretation. It will, therefore, be sufficient for me, without expressing a confident opinion as to the meaning of such resemblances, to say that my study of the subject has induced the belief that all the resemblances of this kind which lave beeu found are not mere accidental coiucidences, bnt that some of them are the results of a mathematical arrangement in nature. The reason or the fitness of this arrangement, I am inclined to think, is explicable mathematically, at least to a greater extent than has been generally supposed, and the search for such an explanatiou I conceive to be a legitimate effort of science. I would, therefore, encourage the collectiou of drawings of organic objects and of mathematical figures, together with other materials for study, in order to combine facts as they appear, and prepare for the discussion of definite questions which may be suggested. Works or memoirs devoted to the measurement of organic products, constituents, aud combinations, or of organic functions, as measured by phenomena of production, of motion or duration, or by the evolution or abstraction of force, may probably be usefnl in furnishing data for the study of the cause of organic forms. But we shall not prescribe rules in this respect. Of late years many researches of this kind have been made, and in several cases by naturalists or physiologists who have not only united mathematical ability to other acquirements, but have left the records of their labor in the shape of mathematical formulæ. Some of these formulæ may become useful iu studying the cause of organic forms.

For some time the writer has beeu engaged in collecting materials of the kind described. The preparation of this paper was undertakeu from a desire to render useful the labor incurred in the collection; but circumstances have prevented as full a treatment of the subject as we could have wished. Many of the authors cited deserve more attention than we have been able here to give to them, and others have been left unnoticed because our limits did not permit us to speak of them as they deserve. On another occasion we hope to returu to our subject under more favorable circumstances.

In submitting this paper to the reader, I have endeavored to make the best selection of matter for general perusal, and to supply some desirable refer-
[Dec.
ences for the use of students who have paid less attention than myself to the subject.*

In concluding, I desire to express my thanks to several members of the Academy of Natural Sciences who have assisted and encouraged me, and especially to Dr. Jos. Leidy.

A Review of the TERNS of North America.

BY ELLIOTT COUES.

Considerable difference has prevailed among ornithological writers with regard to the relationships of many of the North American Sternine with the representative species of Europe. Having at command a very extensive series of specimens from both continents, I have instituted a carcful comparison of the more or less intimately related species, believing that the results of such an investigation would not prove unacceptable to ornithologists. While this has been the principal aim of the present paper, I have endeavored to present fairly the data tending to determine some other points of synonymy and relationship which even at this late day remain open to discussion; and to give such stages of plumage as are not already too well known to require notice. The paper is not to be considered in any sense as a monograph; I have endeavored to express its character in its title.

I am under particular obligations to Mr. G. N. Lawrence and Mr. D. G. Elliot, for the opportunity of examining several unique and typical specimens, and unusual stages of plumage, of which the museum of the Smithsonian Institution does not contain examples.

Family LARID AE.

Subfamily STERNIN R.

Section STERNEE.

Genus GELOCHELIDON Brehm.

Gelockelidon, Brehm, Vög. Deutsch. 1830. Type S. anglica, Mont.
Laropis, Wagler, Isis, 1832, p. 1225. Same type.
Char.--Bill shorter than the head, extremely robust, not very acute; its height at base nearly a third of its total length along culmen; prominence at symphysis well marked, but not very acute, situated so far back as to make the gonys equal in length to the rami, reckoning from the termination of the feathers on the side of the mandible. Culmen very convex; gonys straight ; commissure gently curved. Wings exceedingly long, and acute ; each feather a full inch louger than the next. Tail ratber short, contained $2 \frac{1}{2}$ times in the wing; in form deeply emarginate, but its lateral feathers without the elongation of Sterna. Feet long and stout; tarsus a little shorter than the bill, exceeding the middle toe and claw. Hind toe well developed; inner shorter

[^8]
[^0]: * Studies in Organic Morphology, ky John Warner. J. B. Lippincott \& Co., Philadelphia, 1857. 1862.$]$

[^1]: * Lssai d'nue Répouse à la question de Prix, \&c. Comptes Rendus, vol. 51, p. 511.
 \dagger The principles of mechauics must be of the greatest importance for all branchos of natural acience, (as Aristotle was aware,) because, according to our conception of the changes of the matterial world. they must be referred to motion. Dr. H. Burheme, Gruudriss der Hoeheren A naly sis, Cassel, 1849, p. 84.
 Dr. Zeising, and others whom we have cited, refer at length to the works of Pythagoras, Platn, and Aristotle, in order to show that the ancients regarded numbers as in some niysterious sense the principia of the universe. The Pythagorcan quatervary, as improved by Plato, consists of the celestial numbers $1,3,7,9$, of which the sum is 20 , and of the terrcatrial series $2,4,6,8$, whose sum is likewise 20. These two together make the sacred quaternary 40 . The number 5 , which is not in the quaternary, but is the middle of the whole series from 1 to 9 , represents the Nous, or supreme intelligence. According to Montucla, these numbers and the idea of their mystic importaucc were derived from the Egyptians. The ancieut Chiuese also venerated the Pythagorean quaternary, and ascribed its invention to the empcror Fo-hi ($2900 \mathrm{~B} . \mathrm{C}$.) Fo-hi was the inventor of the binary arithmetic, of which he left the notation in the Cova. or Figure of Eight. M. Huc relatcs that the Chinese still venerate a mysterious book, called the Look of Changes, y-King. The meaning of this book has loug been lost. From M. Huc's dicscription of the 64 whole and broken lines of this book, and from Lcibnitz's description and intcrpretation of the Cova. I have little doubt that the y-King pertains to the arithmetrcal system recorded in the Cova. The tradition of the Chinese, that the y-King is capable of explaining all things, may, thereforc, indicate that the ancient Chinesc werc uot unaware of the inportance of number in the order of the universe, and that their sages had conceived the idea of a mathematical explanation of Na ture, as clearly as such an idea could be couceived in adrance of the science of physical mathematics: possibly they progressed no further than to incorporate the Cova in their rcligious mysteries. Montucla, Histoire des Mathématiques, vol. i. p. 122. Chinese Empire, by 3 Lu ur, Iondon, 1855, vol. i. p. 124. Leibnitz, Mémoire de l'Acad. Française, vol. xviii. 1703 , p. E5. Dr. Il. Burhenne, Grumdriss der Itocheren Analysis, Casstl, 1849, p. 84.
 \ddagger Ueber die Mathematische Behandlung Organischer Gestalten und Processe. Verh. d. Koenl. Siechs. Gesellsch. Mathematisch-Physische K1., Jarhgang 1849.

 Mr. Hay has published a method for defining geonetrically the shape of the human head and the proportion of its parts. The method is founded on a system of tringles, of which the angles heve cortain ratios manifested in the vibrations of musical strings. See D. R. Hay on the BeauIdeal Head of Ancicnt Greek Art. Trans. Soc. of Arts, vol. i. part 2 , New Series, 1847-8.

 The same author has written several works on the Beautiful in Form. His a aturel Principles of Buauty (London and Edinburgh, 1852) gives a concise explanation of his geometrical construction of the human figure. The same subject is differently treated bv Dr. A. Zcising, Neue Lchre von den Proportionen des Menschlichen Koerpers; Lcipzig, 1854. The student of Morphology will be interested in comparing with these works, Die aus der Arithmetic uud Geometrio heraungeholten Gruende zur Mensehlichen Yroportion; Gcorg Lichtensteger, Nuremberg, 1746.

[^2]: * Allgemeine Physiologio des Koerparlichen Labens. Leiphig. 1851, p. $32 y$.
 \dagger 1bid. p. 335. The labors of Hanstein and Wright in invesigating the law of phyllotixis-ishthough they do not prove mathematically the cause of phyllotaxis, but rather pertain to its tnleological significance-appear to me to contain remarkable applications of mathematics to the study of Organic Morphology, and to take much from the general force of Lotze's criticism. Wanstein ueber den Zusammenhang der Blattstellugg mit dem Bau des cakutylen Holzriages. Moastsber. d. Kocnl. Preuss. Aks. d. Wiss., Berlin, 1857, p. 105. Wright on ibe most thorough, uniforas distribution of points about an Axis, Matbematical Monthly, April, 1859.
 †Die Bildung der fuer partielle Furchung bestimmten Eier der Vuegel, \&c. Zeitschr. f. Wibs. Zoologit, vol. 3, 1851, p. 432.
 § We may refer the reader to Mr. Kay's Principles of Symmetrical Eeazty, and to Purdie on Form and Sound (Edinburgh, 1859), fur information concerning the comosite ellipse-a figarwhich seems to offer or to suggest means for closely imitating the forms of various egge.
 $\|$ Note sur de3 orsements et des ceufs trouvé + à Madagasear, dana eics alluvions modernt.5, pt provenant d'un oiseau gigantesque; par M. Isidore Geoffroy-Saimt-Hilaire. Comptes Rendus, vols. xxxii. p. 101; xxsix. p. 833; xlii. p. 315 , and xliii. p. 518.

 IT This curve may be termed the hyper-ellipse, beciuse ita radius vector is a powar of the tadina vector of an ellipse, taken from the feas, or bocause its radius is clarived from the ellinse as in the following construction.

[^3]: ＊Mémoire sur l＇Histoire du Planorbis corneus，par Emile Jacquemin．Nova Acta Acad．C． Leopold．vol．xviii．p， 635.
 \dagger The agreement in size is satisfactory，and the egg is marked with the name of Dr．Warren， who relates that a cast of the pointed egg was presented to hinı．（Fossil Impressions，\＆c．，Boston， 1954．）The length which he gives for the egg is incorrect．The mistake probably arose rom a typographical error，which is corrected in Comptea Rendus，vol．xl．p． 519.

[^4]: * Grandu9, A Collection of Geometrical Flowers: Abridged Phil. Trans., vol. vi. p. 67, 1723. Bernoulli, Icipzig Acts., 1692. Moseley. Phil. Trans., 1838. Naumann, Abh. d. Jablonowskischen Gesellsch., Leipzig, 1846. Also Abh. đ. Math. Phys. Kl. d. K. S. Gesellsch., Leipzig, 1852. Sandberger, ueber die Spiralen von Ammonites, \&c., Zeitschr. d. Deutsch. Geol. Gesellsch., vol. x. 1858, p. 446 .
 \dagger I am not aware to what extent the riews of Moseley concerning the growth of shells have been adopted by naturalists. Naumann, as far as he expresses any opinion, seems to agree with Moseley on this subject. To me, Moseley's explanation of the growth of shells, and of the manner in which their mathematical properties suit the life and growth of the animal, appear very interesting and important, and, did our limits permit, would well deserve to be noticed here at length. From the paper of Sandberger's just cited, I am led to believe that the determination of the equations of the windings of shells is now recognized by scientific conchologists as a valuable descriptive method.
 \ddagger Phy*iologie, p. 330.

[^5]: * I am not informed how far naturalists have considered this subject. Some experiments of my own, made on hen's eggs, in order to ascertain the relation between the size of the yolk and other dimensions of the egg, and also whether the centre of the yolk nole nearly coincides with the centre of gravity of the egg or with the centre of the axis, resulted in gaining some preliminary experience in the method of observation, but did not establish auy thing certainin regard to the chject of research.
 - The rule for computation is, Multiply the square of the thickness by the length, and the prom duct by 5236 . The result is the solidity.
 + Since writing the above I have secn, in the collection of the Smithsonian Institution, the cast of an egg of Epiornis (the egg sent from Madayascar in 1850), but have not had an opportunity of clozely examining it. The date indicates that it is from a cast of the ellipsoidal egg described ty M. St. Hilaire in his first memoir, and which accompanied the ege we have endeavored to imitate in Fig. 4. Without a careful measurement of the cast. it would, in my opinion, be unsafe to cinclude that the egg in question is more nearly ellipsoidal than its fellow is byper-ellipsoidal.

 そ Encyclopedia Britannica, Buston ed., art. Optics, p. 546.

[^6]: * Commentationes Societatis, \&c., Goettingen, 1778 , vol. i. For a curious resemblance to a tree, produ ed by the action of lightning, see Mr. Charles Tomlinson on Lightning Figures, Edinburgh New Pbil. Journal. Vol. xiv. No. 2, Oct. 1861, and vol. xv. No. 1, Jan. 1862.
 \dagger Principes de Physiologie et Eléments de Morphogénie Générale, par J. E. Cornay (de Rochefrt), Paris, 1853, jp. 112, 191, 212-215. M. Cornay has labored carnestly and industriously to protante the knowledge of Morphology. Some important propositions which he confidently assumes appear to us still to want satislactory proof. Thus, for example, because the shape of an insect agrees with the outline of a cluster of electrified needles, he appears to be satisfied that he has frunl in the action of electricity, or of some hypothetical fluid, the true cause of the organic form.
 \ddagger For certain formulæ which will be necessary in this and the following investigations, see Stulles in Organic Morphology, pp. 32, $33,40,41$. The curves now to be discussed belong to the general furm

 $$
 \rho=\left(\frac{p}{1-e \cos k \theta}\right)^{n}
 $$

 wherein p is the semi-parameter, and e the eccentricity, of an ellipse. For the hyper-ellipse, $k=1, n=\frac{1}{2}$. In Fig. $5, k=5, n=\frac{1}{4}$. In Fig. $7, k=4, n=\frac{1}{8}$. The equation $\rho=\frac{p}{1-e \cos k \theta}$ represents an immovable orbit substituted for an clliptical orbit revolving about its focus, Prop. XLIII. B. I., Newton's Principia, and Wright's Commentary on the Principia, London. 1828, vol.ii. p. 245 . Curves of the sort in question may be produced by revolvisg an ellipse, under various conditions, whilst a describing point revolves in the ellipse. Some years since, I exhibited to the pottsrille Scicutific Association a mechanical arrangement for producing such figures. Suardis's Qeonetric Pen is also an interesting instrument for describing curves. The joints of the pen remind us of the joints in the limbs of animals, and furnish a hint as to a mathematical conception of the motion of the limbs. See Adams's Geometrical and Graphical Fsssys, Loudon, 1813, p. 151.

[^7]: * We may here call attention to the fact that the radius vector of the hyper-ellipse, for the extremity of the greatest ordinate, is $\rho=\sqrt{a m} \bar{m}$, that is, this radins is a mean proportional between the halflength and half-width of the figure. This is interesting because Dr. Zeising adopts the mean proportion as a general morphological law; but this proportion of itself cannot bs satisfitctory: we require some rule for knowing what objects or parts of objects are to be thus compared. As long as no such rule exists, the comparisons may often seem arbitrary. Dr. Zeising proposes, for the egg-curve, to divide the length into two parts, say a^{\prime} the greater anl m^{\prime} the !esser; then m^{\prime} will also represent the half thickness, and we shall have the proportiou $a^{\prime}+m^{\prime}: \alpha^{\prime}:: a^{\prime}: m^{\prime}$, whence $a^{\prime}=\sqrt{m^{\prime}\left(a^{\prime}+m^{\prime}\right)}$. It is not, however, shown by him that this mean propurtion is neces\&arily more significant in Morphology than $\rho=\sqrt{u m}$ above mentioned (Neue Lohre, p. 22s). nr. Zeising's application (Neue Lehre, p. 361) of the extreme and mean ratio, or golden section, to the division of the circle in phyllotaxis, has received a remarkable confirmation as a law of nature, oy the labors of Hanstein and Wright, before cited. His application of this ratio to the relations of the planetary system seem to me worthy of close stady; but proof is required of a similar significance of this ratio in astronomy and in botany, before we can assume that there is an entire identity between the laws which regulate both the planetary and the phyllotactic systems. (Neue Lehre, p. 327. Normalverbältniss, \&c., Leipzig, 1856, pp. 2, 45.)

[^8]: * Several authors not mentioned in our former work may here be briefly cited.

 Borellus, De Motu Animalium.
 Camper, Beobachtungen der Berlinisehen Gesellschaft, vol. i. 1787.
 Von dem Fluge der Voegel, Schriften der Berlinischen Gesellschaft, vol. ii. 1781, p. 214.
 Mayer, Das aufrecht Stehen. Mueller's Archiv, vol. xx. 1853, p.9.
 Fick, Ueber die Gestaltung der Gelenkflaechen. Mueller's Archiv, 1853, vol. xx. p. 65\%.
 Schuebler, Bedeutung der Mathematik fuer die Naturgeschichte. Jabreshette des Vereins fuer Vaterlandskunde, Stuttgart, 1849.
 Dr. J. Aiken Meigs, Relation of Atomic IIeat to Crystalline Form, vol. iii. Jour. Acad. Nat. Sc. Philadelphia, 1855-58, p. 105.
 Prof. Popoff, Description de la Courbe fruiforme. Bulletin de la Société des Naturalistes de Moscou, 1859 , part i. p. 283.
 Zeising, Ueber die Metamorphosen in den Verhaeltnissen der menschlichen Gestalt. Acta Aeademiæ Cesareæ Leopoldino-Carolinæ, vol. xxvii. part ii.
 1862.]

